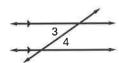
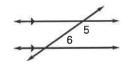

3-2 Parallel Lines and Transversals

I will be able to ...

- (target) Goals · Prove and use results about parallel lines and transversals.
 - Use properties of parallel lines to solve problems.

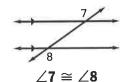

POSTULATE 15: CORRESPONDING ANGLES POSTULATE

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

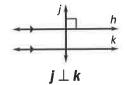

THEOREM 3.4: ALTERNATE INTERIOR ANGLES

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

THEOREM 3.5: CONSECUTIVE INTERIOR ANGLES

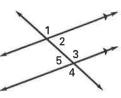

If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

$$m \angle 5 + m \angle 6 = 180^{\circ}$$


THEOREM 3.6: ALTERNATE EXTERIOR ANGLES

If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.

THEOREM 3.7: PERPENDICULAR TRANSVERSAL


If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

55

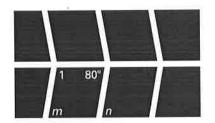
Example 1 Using Properties of Parallel Lines

Given that $m \angle 1 = 118^{\circ}$, find each measure. Tell which postulate or theorem you use.

Solution

a.
$$m\angle 2 = 180^{\circ} - m\angle 1 = 62^{\circ}$$

b.
$$m \angle 3 = m \angle 1 = 118^{\circ}$$


c.
$$m \angle 5 = m \angle 2 = 62^{\circ}$$

d.
$$m \angle 4 = m \angle 1 = 118^{\circ}$$

Theorem

Using Properties of Parallel Lines Example 2

Parking Lot Design In the diagram of the parking lot, $m \parallel n$. What is $m \angle 1$?

Solution

$$m \angle 1 + 80^{\circ} = 180^{\circ}$$

Consecutive Interior Angles

Theorem

$$m \angle 1 = 100^{\circ}$$

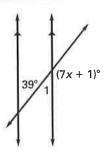
Subtraction Property of Equality

- **Checkpoint** Given that $m \angle 6 = 53^{\circ}$, find the angle measure. Tell which postulate or theorem you use.
 - **1.** ∠7

53°: Alternate Interior Angles Theorem

m 28+m 27 = 180° **2.** ∠8

127°; Linear Pair Postulate


3. 29 m26+m29=180°

127°; Consecutive Interior Angles Theorem

Example 3

Using Properties of Parallel Lines

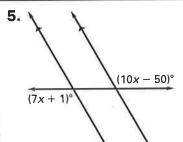
Use properties of parallel lines to find the value of x.

Solution

$$m\angle 1 = \underline{39}^{\circ}$$

 $m\angle 1 + (7x + 1)^{\circ} = \underline{180}^{\circ}$
 $\underline{39}^{\circ} + (7x + 1)^{\circ} = \underline{180}^{\circ}$
 $7x = \underline{140}$

Checkpoint Use properties of parallel lines to find the value of x.


x = 20

4. (3x)°

30

$$3 \times = 90$$
(perp. trans. thm.)
$$\frac{3 \times = 90}{3}$$

$$\times = 30$$

$$7x+1=10x-50$$

$$(alt. ext. 2sthm.)$$

$$-7x - 7x$$

$$1 = 3x-50$$

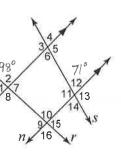
$$+50 +50$$

$$51 = 3x$$

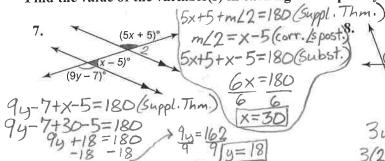
$$\frac{3}{3}$$

3-2 | Practice (examples)

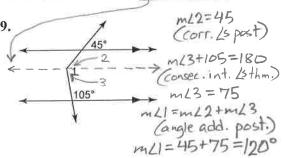
Angles and Parallel Lines

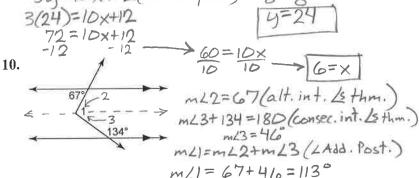

In the figure, $m \angle 2 = 98$ and $m \angle 12 = 71$. Find the measure of each angle. Tell which postulate(s) or theorem(s) you used.

- 1. ∠10 = m /2=98° (corr. Le post.)
- 3. ∠9+m LIO=180° (Suppl. Thm.) ∠9+98=180°→m∠9=82°
- 5. \(\alpha\) 11+m\(\alpha\) 12=180° (Suppl. Thm.)


 m\(\alpha\) 11+ 71=180°

 m\(\alpha\) 11=109°
- 2. L8=m/2=98° (vert./sthm.)
- 4. \(5+m/12=180 \) (consec. int/s) \(m25+71=180 \rightarrow m25=109 \)
- 6. ∠13+mL12=180° (Suppl. Thm. mL13+71=180°


m213+71=180° m213=109°


Find the value of the variable(s) in each figure. Explain your reasoning.

Find x. (Hint: Draw an auxiliary line.)

5y-12+mL3=180(suppl. 7hm.) mL3 = 3y (corr. Ls Post.) 5y-12+3y=180 (Subst.) 5y-12+3y=180 (Subst.) $3y^{\circ}$ (10x+12) 8y-12=180 +12+12 8y=192 3y=10x+12 (corr. Ls Post.)

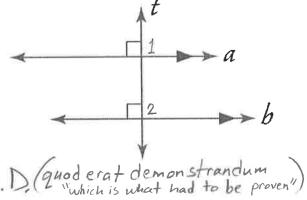
11. PROOF Write a paragraph proof of Theorem 3.4.

Given: a || b, a 1 t We are given that a Lt,

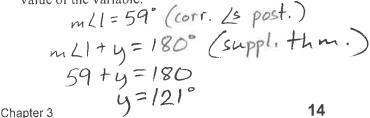
Prove: b 1 t so by Def. of L, 21 is a

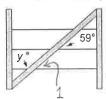
rt. Z, and by Def. of rt. Z, its

measure is 90°. L1 = L2, because


all b and they are corr. Ls, so m L1 = m L2 by

Def. of = Ls. We can substitute and


get m L2 = 90. Therefore by Def.,


L2 is a rt. L, and b Lt by

Def. of perpendicular lines. Q.E. I

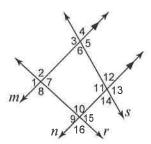
12. **FENCING** A diagonal brace strengthens the wire fence and prevents it from sagging. The brace makes a 59° angle with the wire as shown. Find the value of the variable.

Practice

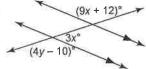
Angles and Parallel Lines

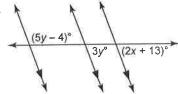
In the figure, $m \angle 2 = 92$ and $m \angle 12 = 74$. Find the measure of each angle. Tell which postulate(s) or theorem(s) you used.

1. ∠ 10

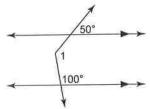

2. ∠8

3. ∠9

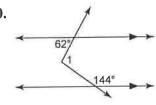

4. ∠5


5. ∠ 11

6. ∠ 13

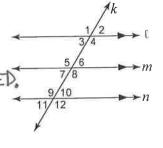


Find the value of the variable(s) in each figure. Explain your reasoning.



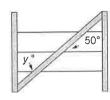
Find x. (Hint: Draw an auxiliary line.)

10.



11. PROOF Write a paragraph proof of Theorem 3.3.

Given: $\ell \parallel m, m \parallel n$ It is (1) that $\ell \parallel m$, so Prove: $\angle 1 \cong \angle 12$ $\angle 1 \cong \angle 18$ by the (2.)


Since it is (3.) that $m \parallel n$, $\angle 8 \cong \angle 12$ by the (4.) Therefore, $\angle 1 \cong \angle 12$

the (4.) Therefore, $\angle 1 = \angle 12$ 5/6 by the (5.) prop. of congruence. QED. $\frac{7/8}{9/10}$ 11/12

12. FENCING A diagonal brace strengthens the wire fence and prevents

it from sagging. The brace makes a 50° angle with the wire as shown. Find the value of the variable.

(3-2 prac. answer bank)

Suppl. Thm.	Suppl. Thm. 37	vert. 15 thm. 92
Alt. Ext. Ls Thm.	suppl. Thm. & corr. Ls Post. 23	Given
consec. int. 25 thm.	98	130
Transitive	corr. La post.	corr. 2s Post.
& Corr. 25 Post.	Given	corr. L's post.
130	Suppl. Thm.	Suppl. Thm. 88