

NOTES

Target: I will be able to identify and use perpendicular bisectors and angle bisectors in triangles.

Theorems Perpendicular Bisectors

5.1 Perpendicular Bisector Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Example: If \overline{CD} is a \perp bisector of \overline{AB} , then AC = BC.

5.2 Converse of the Perpendicular Bisector Theorem

if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Example: If AE = BE, then E lies on \overline{CD} , the \bot bisector of \overline{AB} .

Exemple 1 Use the Perpendicular Bisector Theorems

Find each measure.

a. AB

From the information in the diagram, we know that \overrightarrow{CA} is the perpendicular bisector of \overline{BD} .

AB = AD

Perpendicular Bisector Theorem

AB = 4.1

Substitution

Theorem 5.3 Circumcenter Theorem

Words

The perpendicular bisectors of a triangle intersect at a point called the circumcenter that is equidistant from the vertices

of the triangle.

Example

If P is the circumcenter of $\triangle ABC$, then

PB = PA = PC.

The circumcenter can be on the interior, exterior, or side of a triangle.

acute triangle

obtuse triangle

right triangle

EXAMPLE 2 Use the Circumcenter Theorem

From the Circumcenter Theorem, G is called the circumcenter which is equidistant from the vertices. Thus, $\overline{BG} \cong AG$ Therefore, GA = 12

The perpendicular bisectors of $\triangle ABC$ meet at point G. Find GA.

Practice:

Find each measure.

1. XW

Point D is the circumcenter of $\triangle ABC$. List any segment(s) congruent to each segment.

BD = AD = CD

Theorems Angle Bisectors

5.4 Angle Bisector Theorem

If a point is on the bisector of an angle, then it is equidistant from the sides of the angle.

Example: If \overrightarrow{BF} bisects $\angle DBE$, $\overrightarrow{FD} \perp \overrightarrow{BD}$, and $\overline{FE} \perp \overline{BE}$, then $\overline{DF} = FE$.

5.5 Converse of the Angle Bisector Theorem

If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle.

Example: If $\overrightarrow{FD} \perp \overrightarrow{BD}$, $\overrightarrow{FE} \perp \overrightarrow{BE}$, and DF = FE, then \overrightarrow{BF} bisects $\angle DBE$.

Example 3 Use the Angle Bisector Theorems

Find each measure.

$$XY = XW$$

 $XY = Y$

Angle Bisector Theorem Substitution

$$SP = SM$$

 $6x - 7 = 3x + 5$
 $3x - 7 = 5$

3×=12

Subtract 3x from each side.

Divide each side by 3.

$$\times = 4$$
 Divide each side by 3. $SP = 6(4) - 7 = 17$

Theorem 5.6 Incenter Theorem

Words

The angle bisectors of a triangle intersect at a point called the *incenter* that is equidistant from the sides

of the triangle.

Example

If P is the incenter of $\triangle ABC$, then

PD = PE = PF.

Example 4 Use the Incenter Theorem

Find each measure if I is the incenter of $\triangle ABC$.

a. JF

By the Incenter Theorem, since J is equidistant from the sides of $\triangle ABC$, JF = JE. Find JF by using the Pythagorean Theorem.

$$JE^{2}+EA^{2}=JA^{2}$$

 $JE^{2}+12^{2}=15^{2}$
 $JE^{2}+144=225$
 $JE^{2}=81$

3. QM = ?

Pythagorean Theorem

Substitution

 $12^2 = 144$ and $15^2 = 225$.

Subtract 144 from each side.

JE=9 Take the square root of each side. JF=9

Practice:

$$1M = QP$$

 $2x+2 = 4x-8$

$$2 = 2 \times -8$$

If P is the incenter of $\triangle XYZ$, find each measure.

4. PK

PK = PL = PJ $a^{2} + b^{2} = c^{2}$ $a^{2} + 12^{2} = 20^{2}$ $a^{2} + 144 = 400$ $a^{2} = 256$ a = 16 PK = 16

Mr. B is designing a kitchen, Mr. B has found out the locations of the Sink K, the Stove S, and the Refrigerator R. Mr. B wants to put a small island in the kitchen equidistant from each vertex, where should Mr. B place the island? at the circumcenter,

at the circumcenter, where the perp. bisectors intersect.

e e