1. **Given:** *S* is on the bisector of $\angle POR$. $$\angle OPS \cong \angle ORS$$ **Prove:** \overline{OS} is a perpendicular bisector of \overline{PR} . | Statements | Reasons | |---|--| | 1. | 1. Given | | 2 . ∠ <i>POS</i> ≅ ∠ <i>ROS</i> | 2. | | 3. $\angle OPS \cong \angle ORS$ | 3. | | 4. | 4. Reflexive Property of ≅ | | 5. $\triangle OPS \cong \triangle ORS$ | 5. | | 6. $\overline{PS} \cong \overline{SR}$,
$\angle OSP \cong \angle OSR$ | 6. | | 7. | 7. Adj. ≅ ∠'s formed by the intersection of 2 lines are rt. ∠'s. | | 8. $\overline{OS} \perp$ bisector of \overline{PR} . | 8. | 2. Given: Isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{AC}$ $\overline{GD} \text{ is perpendicular bisector of } \overline{AB}.$ $\overline{GE} \text{ is perpendicular bisector of } \overline{AC}.$ **Prove:** $\triangle GDB \cong \triangle GEC$ | Statements | Reasons | |--|---| | 1. | 1. Given | | 2. ∠ <i>BDG</i> , ∠ <i>CEG</i> are rt ∠'s | 2. | | 3. △BDG and △CEG are right triangles | 3. | | 4. | 4. Def. of segment bisector | | 5. $BD = DA$,
CE = EA | 5. | | 6. | 6. Segment Add. Post. | | 7. $BD + DA$
= $CE + EA$ | 7. | | 8. $2BD = 2CE$ | 8. | | 9. | 9. Division prop. of equality | | 10. $\overline{BD} \cong \overline{CE}$ | 10. | | 11. | 11. Circumcenter is equidistant to vertices | | 12. $\triangle GDB \cong \triangle GEC$ | 12. |