1. **Given:** *S* is on the bisector of $\angle POR$.

$$\angle OPS \cong \angle ORS$$

Prove: \overline{OS} is a perpendicular bisector of \overline{PR} .

Statements	Reasons
1.	1. Given
2 . ∠ <i>POS</i> ≅ ∠ <i>ROS</i>	2.
3. $\angle OPS \cong \angle ORS$	3.
4.	4. Reflexive Property of ≅
5. $\triangle OPS \cong \triangle ORS$	5.
6. $\overline{PS} \cong \overline{SR}$, $\angle OSP \cong \angle OSR$	6.
7.	7. Adj. ≅ ∠'s formed by the intersection of 2 lines are rt. ∠'s.
8. $\overline{OS} \perp$ bisector of \overline{PR} .	8.

2. Given: Isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{AC}$ $\overline{GD} \text{ is perpendicular bisector of } \overline{AB}.$ $\overline{GE} \text{ is perpendicular bisector of } \overline{AC}.$

Prove: $\triangle GDB \cong \triangle GEC$

Statements	Reasons
1.	1. Given
2. ∠ <i>BDG</i> , ∠ <i>CEG</i> are rt ∠'s	2.
3. △BDG and △CEG are right triangles	3.
4.	4. Def. of segment bisector
5. $BD = DA$, CE = EA	5.
6.	6. Segment Add. Post.
7. $BD + DA$ = $CE + EA$	7.
8. $2BD = 2CE$	8.
9.	9. Division prop. of equality
10. $\overline{BD} \cong \overline{CE}$	10.
11.	11. Circumcenter is equidistant to vertices
12. $\triangle GDB \cong \triangle GEC$	12.